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§42) 2) d) Since lim |e7*| = lim e~ (B¢®)? =0 for Rez > 0, we have lim e~*' = 0. Therefore,
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§42) 4) Note that
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by comparing the real part and imaginary part on both sides of (1), we have

s T 1 us by 1
/ e” cosxdr = — (" +1) and / e’ sinxdr = (" +1) .
0 2 0 2

843) 4) The equation of straight line in 7¢ plane passing through the points («, a) and (8, b) is given by
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In particular, we may take ¢(7) to be
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Clearly it is bijective and strictly increasing on [a, f].

§43) 5) Write w(x,y) = u(x,y) + iv(x,y) and z(t) = z(t) + iy(t).
If w(t) = f[z(¢)] = u(z(t), y(t)) + iv(z(t), y(t)), then by Chain rule, we have
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By Cauchy-Riemann equation, we have
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§46) 1) For the function f(z) = 2 ,
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¢) By a) and b), we have / f(z)dz = (=4 + 2mi) + (4 + 2mi) = 4mi.
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§46) 4) Parametrize the curve C by 7(t) = t + t3i, where t € [—1,1]. We have
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§46) 9) a) For the principal branch of z=3/4,

b) For the branch arg z € (0,27) of 273/, similarly,
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846) 13) For n € Z,
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